SETD2

Protein-coding gene in the species Homo sapiens
SETD2
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2A7O, 2MDC, 2MDI, 2MDJ, 4FMU, 4H12

Identifiers
AliasesSETD2, HBP231, HIF-1, HIP-1, HYPB, KMT3A, SET2, p231HBP, HSPC069, LLS, SET domain containing 2
External IDsOMIM: 612778; MGI: 1918177; HomoloGene: 56493; GeneCards: SETD2; OMA:SETD2 - orthologs
Gene location (Human)
Chromosome 3 (human)
Chr.Chromosome 3 (human)[1]
Chromosome 3 (human)
Genomic location for SETD2
Genomic location for SETD2
Band3p21.31Start47,016,429 bp[1]
End47,163,967 bp[1]
Gene location (Mouse)
Chromosome 9 (mouse)
Chr.Chromosome 9 (mouse)[2]
Chromosome 9 (mouse)
Genomic location for SETD2
Genomic location for SETD2
Band9|9 F2Start110,532,597 bp[2]
End110,618,633 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • tendon of biceps brachii

  • endothelial cell

  • epithelium of colon

  • Achilles tendon

  • ventricular zone

  • sural nerve

  • pancreatic ductal cell

  • ganglionic eminence

  • internal globus pallidus

  • tonsil
Top expressed in
  • hand

  • genital tubercle

  • tail of embryo

  • ventricular zone

  • morula

  • neural layer of retina

  • granulocyte

  • mesenteric lymph nodes

  • thymus

  • epiblast
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
  • methyltransferase activity
  • transferase activity
  • protein binding
  • histone-lysine N-methyltransferase activity
  • protein-lysine N-methyltransferase activity
  • alpha-tubulin binding
  • histone methyltransferase activity (H3-K36 specific)
  • metal ion binding
Cellular component
  • nucleoplasm
  • nucleus
  • chromosome
Biological process
  • regulation of transcription, DNA-templated
  • histone H3-K36 dimethylation
  • regulation of mRNA export from nucleus
  • embryonic organ development
  • stem cell development
  • embryonic placenta morphogenesis
  • transcription elongation from RNA polymerase II promoter
  • coronary vasculature morphogenesis
  • cell migration involved in vasculogenesis
  • morphogenesis of a branching structure
  • transcription, DNA-templated
  • mesoderm morphogenesis
  • vasculogenesis
  • histone H3-K36 methylation
  • methylation
  • neural tube closure
  • nucleosome organization
  • angiogenesis
  • pericardium development
  • regulation of gene expression
  • histone H3-K36 trimethylation
  • embryonic cranial skeleton morphogenesis
  • DNA mismatch repair
  • histone lysine methylation
  • forebrain development
  • regulation of double-strand break repair via homologous recombination
  • peptidyl-lysine trimethylation
  • peptidyl-lysine monomethylation
  • regulation of cytokinesis
  • positive regulation of interferon-alpha production
  • response to type I interferon
  • endodermal cell differentiation
  • stem cell differentiation
  • microtubule cytoskeleton organization involved in mitosis
  • regulation of protein localization to chromatin
  • immune system process
  • DNA repair
  • cellular response to DNA damage stimulus
  • multicellular organism development
  • cell differentiation
  • innate immune response
  • defense response to virus
  • chromatin organization
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

29072

235626

Ensembl

ENSG00000181555

ENSMUSG00000044791

UniProt

Q9BYW2

E9Q5F9

RefSeq (mRNA)

NM_012271
NM_014159
NM_001349370

NM_001081340

RefSeq (protein)

NP_054878
NP_001336299

NP_001074809

Location (UCSC)Chr 3: 47.02 – 47.16 MbChr 9: 110.53 – 110.62 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

SET domain containing 2 is an enzyme that in humans is encoded by the SETD2 gene.[5][6][7]

Function

SETD2 protein is a histone methyltransferase that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active chromatin. This protein also contains a novel transcriptional activation domain and has been found associated with hyperphosphorylated RNA polymerase II.[7]

The trimethylation of lysine-36 of histone H3 (H3K36me3) is required in human cells for homologous recombinational repair and genome stability.[8] Depletion of SETD2 increases the frequency of deletion mutations that arise by the alternative DNA repair process of microhomology-mediated end joining.

Clinical significance

The SETD2 gene is located on the short arm of chromosome 3 and has been shown to play a tumour suppressor role in human cancer.[9]

Interactions

SETD2 has been shown to interact with Huntingtin.[10] Huntington's disease (HD), a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expansion of a polyglutamine tract in the HD protein huntingtin. SETD2 belongs to a class of huntingtin interacting proteins characterized by WW motifs.[7]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000181555 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000044791 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z (Oct 2005). "Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase". J Biol Chem. 280 (42): 35261–71. doi:10.1074/jbc.M504012200. PMID 16118227.
  6. ^ Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquitan G, Putzer BM (Jul 2001). "Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor". Mol Cell Neurosci. 18 (1): 68–79. doi:10.1006/mcne.2001.1004. PMID 11461154. S2CID 31658986.
  7. ^ a b c "Entrez Gene: SETD2 SET domain containing 2".
  8. ^ Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, Helleday T, Legube G, La Thangue NB, Porter AC, Humphrey TC (June 2014). "SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability". Cell Rep. 7 (6): 2006–18. doi:10.1016/j.celrep.2014.05.026. PMC 4074340. PMID 24931610.
  9. ^ Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K (2009). "The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters". BMC Cancer. 9: 290. doi:10.1186/1471-2407-9-290. PMC 3087337. PMID 19698110.
  10. ^ Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME (September 1998). "Huntingtin interacts with a family of WW domain proteins". Hum. Mol. Genet. 7 (9): 1463–74. doi:10.1093/hmg/7.9.1463. PMID 9700202.

Further reading

  • Faber PW, Barnes GT, Srinidhi J, et al. (1998). "Huntingtin interacts with a family of WW domain proteins". Hum. Mol. Genet. 7 (9): 1463–74. doi:10.1093/hmg/7.9.1463. PMID 9700202.
  • Passani LA, Bedford MT, Faber PW, et al. (2000). "Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis". Hum. Mol. Genet. 9 (14): 2175–82. doi:10.1093/hmg/9.14.2175. PMID 10958656.
  • Zhang QH, Ye M, Wu XY, et al. (2001). "Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells". Genome Res. 10 (10): 1546–60. doi:10.1101/gr.140200. PMC 310934. PMID 11042152.
  • Nagase T, Kikuno R, Hattori A, et al. (2001). "Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (6): 347–55. doi:10.1093/dnares/7.6.347. PMID 11214970.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
  • Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. Bibcode:2004PNAS..10112130B. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
  • Li M, Phatnani HP, Guan Z, et al. (2006). "Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1". Proc. Natl. Acad. Sci. U.S.A. 102 (49): 17636–41. doi:10.1073/pnas.0506350102. PMC 1308900. PMID 16314571.
  • Lim J, Hao T, Shaw C, et al. (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569. S2CID 13709685.
  • Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983. S2CID 7827573.
  • v
  • t
  • e
  • 2a7o: Solution Structure of the hSet2/HYPB SRI domain
    2a7o: Solution Structure of the hSet2/HYPB SRI domain


Stub icon

This article on a gene on human chromosome 3 is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e